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Abstract

We consider a matrix model description of the 2d string theory whose matter part

is given by a time-like linear dilaton CFT. This is equivalent to the c = 1 matrix model

with a deformed, but very simple fermi surface. Indeed, after a Lorentz transformation,

the corresponding 2d spacetime is a conventional linear dilaton background with a time-

dependent tachyon field. We show that the tree level scattering amplitudes in the matrix

model perfectly agree with those computed in the world-sheet theory. The classical tra-

jectories of fermions correspond to the decaying D-branes in the time-like linear dilaton

CFT. We also discuss the ground ring structure. Furthermore, we study the properties of

the time-like Liouville theory by applying this matrix model description.

1 e-mail: takayana@bose.harvard.edu



1. Introduction

It is well-known that the two dimensional string theory with a static linear dilaton

and Liouville potential can be described non-perturbatively by the dual matrix model

[1][2][3], called c = 1 matrix model2. At the world-sheet level, this model is equivalent

to a free boson theory (with the central charge c = 1 matter) plus the Liouville theory

(c = 25), defined by the world-sheet action3 and the string coupling constant

S =

∫

dσ2[−∂X0∂̄X0 + ∂φ∂̄φ + µe2φ], gs = e2φ. (1.1)

There is only one propagating scalar field η, which is related to the tachyon field T in

bosonic string via T ∼ gs · η. It behaves like a massless scalar field in the 2d linear

dilaton background. The dual c = 1 matrix model is defined by a quantum mechanics of

a N × N Hermitian matrix Φ with a inverse harmonic potential (after the double scaling

limit N → ∞)

Smat =

∫

dtTr
[

(DtΦ)2 + Φ2
]

. (1.2)

Here, Dt = ∂t − i[At, ] denotes the covariant derivative with respects to the U(N) gauge

symmetry, projecting out non-singlet sectors. The eigenvalues x of Φ behave like N free

fermions and they form a fermi sea. The static vacuum (1.1) of string theory corresponds

to the static fermi surface

p2 − x2 = −2µ, (1.3)

in the two dimensional semiclassical phase space (x, p) ≡ (x, ẋ). We can also employ the

type 0 model [9][10] or type II model [11][12] to make the non-perturbative issues clearer.

As a next step, it will also be natural and interesting to ask what will happen if we

consider a spacetime with a different property in the time direction. One of the simplest

examples will be the time-like linear dilaton theory and this is a basic example of time-

dependent backgrounds in string theory4. In our context, we can consider a string model

defined by the time-like linear dilaton theory (with the central charge c = 1 − 6q2) plus

2 For reviews see e.g. [4][5][6][7][8].
3 In this paper we set α′ = 1.
4 Refer to e.g.[13][14][15][16][17][18] for recent discussions.
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the space-like Liouville theory (c = 1 + 6Q2) on the world-sheet. This may be called a

non-minimal c < 1 non-critical string. Its world-sheet action is simply given by

S =

∫

dσ2[−∂X0∂̄X0 + ∂φ∂̄φ + µe2bφ], (1.4)

with the background charge terms which correspond to the coupling constant

gs = eqX0+Qφ. (1.5)

The values of the background charges are

Q = b +
1

b
, q = −b +

1

b
, (1.6)

in terms of the parameter b, which satisfies the condition5

0 < b < 1. (1.7)

In this rather simple example we can solve the theory exactly by applying known results of

the Liouville theory [20][21][22]. It is obvious that the system will get strongly coupled in

the late time. However, if we consider the physical process of scattering of closed strings

from the Liouville wall, the process itself does not occur in the strongly coupled region

because of the inequality q < Q.

After the Lorentz transformation,

X̃0 =
Q

2
X0 +

q

2
φ, φ̃ =

q

2
X0 +

Q

2
φ, (1.8)

we can equivalently obtain the usual static linear dilaton vacuum perturbed by a time-

dependent Liouville potential defined by

S =

∫

dσ2
[

−∂X̃0∂̄X̃0 + ∂φ̃∂̄φ̃ + µ exp
(

(b2 − 1)X̃0 + (1 + b2)φ̃
)]

, gs = e2φ̃. (1.9)

In general, time-dependent backgrounds in 2d string theory correspond to deformed and

time-dependent fermi surfaces in the c = 1 matrix model and this issue has been discussed

5 Here, the condition b < 1 comes from the Seiberg bound [19] and also we assumed that b is

positive using the sign flip φ → −φ.
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in the papers [23][24][25][26][27][28][29][30]. As recently pointed out in [28], they lead to

non-perturbatively tractable examples of the interesting time-dependent model of closed

string tachyon condensation. In this paper we would like to closely understand the duality

between the time-dependent backgrounds in 2d string theory and the matrix model with

a deformed fermi surfaces via the special example (1.9), where we can solve the theory in

both sides.

It is also intriguing to consider the case where b is imaginary (or b2 < 0). This

corresponds to the time-like Liouville theory [14][15][31] after the double wick rotation

(X0, φ) → (−iφ,−iX0) in (1.4). Since this conformal field theory is far from well-

understood, the matrix model formulation should be definitely useful. As we will see

later, indeed we find rather different properties compared with those in the usual space-

like Liouville theory.

This paper is organized as follows. In section 2 we first give a direct matrix model

dual of the 2d string theory with the time-like linear dilaton matter; and then we show

that the model is equivalent to the ordinary c = 1 matrix model via a field redefinition as

expected from the Lorentz invariance. We also compute the closed string emission from

the decaying D-branes and identify the leg factor from the results. In section 3 we give an

equivalent description as a time-dependent background in c = 1 matrix model. We also

compute the scattering S-matrices in this background and find agreements with those in

the world-sheet theory. In section 4 we discuss the time-like Liouville theory by applying

the matrix model dual. We correctly reproduce the expected spacetime geometry using

the collective field description. In section 5 we consider the ground ring structure of our

background and discuss the relation to non-compact Calabi-Yau manifolds. In section 6

we summarize the results and discuss future problems.

2. Matrix Model and 2D String with Time-like Linear Dilaton Matter

First, let us try to derive directly the matrix model dual of the 2d string with the

time-like linear dilaton matter defined by (1.4) and (1.5). To construct a matrix model for

a new background it is helpful to remember the recent interpretation of the c = 1 matrix

model as a theory of unstable D0-branes (so called ZZ-brane [32]) [33][34]. The matrix
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Φ can be regarded as a open-string tachyon field on them and the matrix model itself

corresponds to an effective action of such D-branes. Then we can argue that a matrix

model dual of time-like linear dilaton background (1.4) is defined by

Smat′ =

∫

dt e−qtTr
[

(DtΦ)2 + Φ2
]

. (2.1)

We have put the time-dependent factor e−qt because the D-brane action is proportional

to g−1
s ∝ e−qt under the identification X0 = t. We chose the tachyonic mass term in (2.1)

such that it agrees with the mass of the D0-brane [32] calculated in the boundary Liouville

theory.

By using the gauge symmetry we can again diagonalize the matrix into the eigenval-

ues λi. Then the action becomes

Smat′ =

∫

dt e−qt
∑

i

[

λ̇i(t)
2 + λi(t)

2
]

. (2.2)

The classical trajectories in this system (2.2) are given by

λ(t) = C1e
−bt + C2e

1
b
t, (2.3)

where C1 and C2 are arbitrary constants. They correspond to the time-dependent open

string tachyon field (so called Rolling tachyon [35]) on unstable D0-branes.

Actually, after the redefinition of the variable

λi(t) = e
q

2 txi(t), (2.4)

the action can be written as (up to total derivative terms)

Smat′ =

∫

dt
∑

i

[

ẋi(t)
2 + (1 +

q2

4
)xi(t)

2

]

. (2.5)

Now we have the conventional c = 1 matrix model with a shifted tachyon mass. This

is expected since we know that the 2d string with the time-like linear dilaton matter is

equivalent to the conventional c = 1 string via the Lorentz transformation (1.8). Indeed if

we perform the Lorentz transformation ∂
∂t = Q

2
∂
∂t̃

+ q
2

∂
∂φ̃

into the usual two dimensional
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string theory with the linear dilaton (1.9), then we can derive the ordinary action of c = 1

matrix model with the correct tachyon mass

Smat =

∫

dt̃
∑

i

[

ẋi(t̃)
2 + xi(t̃)

2
]

. (2.6)

2.1. Closed String Emission and Leg Factor

From the world-sheet viewpoint, a particular class of open string tachyon conden-

sation on the unstable D0-brane can be represented by the boundary time-like Liouville

theory [36][37][38][39][40] (so called the half S-brane) defined by the action

S =

∫

dσ2(−∂X0∂̄X0) + µB

∫

∂Σ

dσe−bX0

, (2.7)

corresponding to the first term in (2.3). The second term in (2.3) is explained as the dual

boundary cosmological constant. This theory can be regarded as a time-like continuation

[38][41] of the boundary conformal field theory on a FZZT-brane [42][43]. By using this

observation, we can compute the closed string one-point function on the decaying D0-brane

as follows6

〈e(q−iE)X0+(Q+iP )φ〉E=P = e−i E
b

log µB · (µγ(b2))−i P
2b · Γ(iP/b)

Γ(−iP/b)

〈e(q−iE)X0+(Q+iP )φ〉E=−P = e−i E
b

log µB · (µγ(b2))−i P
2b · Γ(iP b)

Γ(−iP b)
,

(2.8)

where we have defined γ(b2) = Γ(b2)
Γ(1−b2)

; the on-shell conditions are given by E = P and

E = −P in the above two cases, respectively.

The physical meaning of this one-point function is the closed string emission from

the decaying D-branes [44]. In 2d string theory, the closed string field is equivalent to

the fluctuation of the fermi surface via the bosonization up to the momentum dependent

phase factor called the leg-factor. On the other hand, each fermion itself can be regarded

as a decaying D0-brane [33][34]. As pointed out in [34], we can directly confirm these

6 We assume α′ = 1 and define the momentum P and energy E such that pµ = (E, P ) and

pµ = (E,−P ). The vertex operator is given by e(q−iE)X0+(Q+iP )φ. When P > 0 the particle is

moving toward strongly coupled region φ → ∞. Also, in the computation of correlators, we are

using a slightly different normalization of µ (by the factor π) compared with the paper [42].
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identifications from the fact that the closed string emission amplitude is given by a phase

factor which coincides with the leg-factor (except the energy dependent term due to the

time-delay). Interestingly, we can also find a similar story in our generalized backgrounds

(1.4)(1.5). Indeed the closed string emission (2.8) is given by a pure phase factor. Fur-

thermore, we can check that it is the same as the leg-factor. To see this, consider the two

point function (or reflection coefficient) [20][21][22]

S(P ) ≡ 〈e(q−iP )X0+(Q+iP )φ e(q+iP )X0+(Q+iP )φ〉 = −(µγ(b2))−iP/b Γ(iP/b)Γ(ibP )

Γ(−iP/b)Γ(−ibP )
.

(2.9)

This is exactly the multiplication of the two terms in (2.8).

These discussions on the closed string emission and leg-factor can be made clearer

by performing the Lorentz transformation (1.8) of these quantities into the system (1.9).

The transformed energy and momentum are given7 by

Ẽ =
Q

2
E +

q

2
P, P̃ =

q

2
E +

Q

2
P. (2.10)

Then we find the closed emission from the half s-brane

〈e−iẼX̃0+(2+iP̃ )φ̃〉Ẽ=P̃ = e−iẼ log µB (µγ(b2))−i P̃
2

Γ(iP̃ )

Γ(−iP̃ )
≡ e−iẼ log µB · eiϕ+(P̃ ),

〈e−iẼX̃0+(2+iP̃ )φ̃〉Ẽ=−P̃ = e−i Ẽ

b2
log µB (µγ(b2))−i P̃

2b2
Γ(iP̃ )

Γ(−iP̃ )
≡ e−i Ẽ

b2
log µB · eiϕ−(P̃ ).

(2.11)

The phase factor eiϕ±(P̃ ) should be regarded as the leg factor in our time-dependent back-

ground of 2d string. Notice that ϕ+ is the same as the usual leg-factor in c = 1 matrix

model as is expected since we can write the Liouville term in (1.9) as µ exp(2φ̃) when

X̃0 = −φ̃. When we consider a incoming wave with the energy Ẽ(= P̃ ) and its reflection,

the energy of the outgoing wave is shifted into Ẽ′ = b2Ẽ(= −P̃ ′) due to the Doppler shift

since the the Liouville wall (1.9) is moving. Then the two point function is given by

S(P̃ ) ≡ 〈e−iP̃ X̃0+(2+iP̃ )φ̃ eib2P̃ X̃0+(2+ib2P̃ )φ̃〉 = −(µγ(b2))−iP̃ Γ(iP̃ )Γ(ib2P̃ )

Γ(−iP̃ )Γ(−ib2P̃ )
. (2.12)

7 In particular, for a massless particle with E = P we have the relation Ẽ = P̃ = E/b = P/b,

while in the opposite case E = −P we get Ẽ = −P̃ = bE = −bP .
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This reflection amplitude can be nicely rewritten in terms of the leg factors

S(P̃ ) = −eiϕ+(P̃ ) · eiϕ−(b2P̃ ), (2.13)

as expected. In this way we have confirmed the identification of matrix model fermions

with decaying D-branes8 in our time-dependent backgrounds (1.9). These results of the

leg-factor will also be useful later when we compare the scattering amplitudes in the matrix

model with the world-sheet computation for arbitrary values of b.

Even though we have examined the special case C1 6= 0 and C2 = 0 in (2.3)(i.e. half

S-brane), it is natural to expect the similar computations can be done for more general

C1 and C2 (so called full S-brane) as has been done for b = 1 case [34] by using the

rolling tachyon boundary state [35]. Thus our matrix model here predicts the existence

of boundary states for general profiles of (2.3) in the time-like linear dilaton theory and

its construction will be an intriguing future problem. Since the trajectory corresponding

to the D-brane should be above the fermi level in the matrix model, we can find a bound

|C1|b
2 |C2| ≤ µ, where µ is the fermi level for our background and will be defined in the

next section.

3. Equivalent Time-dependent Background in c = 1 Matrix Model

As we have seen in the previous section, the matrix model dual of the 2d string

background (1.4) can be given by a time-dependent background of c = 1 matrix model.

The 2d Lorentz transformation is not clear in the holographic dual matrix model since the

Liouville direction is hidden inside the infinitely many eigenvalues. Thus it is an non-trivial

8 If we consider the static D0-brane (i.e. ZZ-brane [32] in (1.4)), then naively we will obtain

a moving D0-brane at the velocity q/Q < 1 in (1.9) after the Lorentz transformation. This D0-

brane may not be static since there is the time-dependent Liouville potential. In this matrix

model, obviously this configuration corresponds to a single fermion on the top of the inverse

harmonic potential.
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and intriguing problem to realize the time-dependent background (1.9) in the c = 1 matrix

model9.

We argue that the string theory background (1.9) can be identified with the time

dependent fermi surface in c = 1 matrix model (we assume µ > 0)

(−p − x)b2(p − x) = 21+b2µ e(b2−1)t̃, (3.1)

where t̃(= X̃0) is the time10 in the matrix model (see (2.6)). Its qualitative behavior can

be summarized as follows. Because of the condition b2 < 1, in the far past t → −∞, the

fermi surface is pushed into the infinity and there is no fermi sea. After that, the fermi sea

gradually begins to appear from the weakly coupled region |x| >> 1, and it finally spreads

out completely. This is intuitively consistent with the property of the time-dependent

tachyon field in (1.9). We starts with the infinite tachyon condensation, which means that

spacetime disappears. Then the tachyon field becomes smaller and the spacetime appears.

Eventually, the tachyon field becomes zero and we have the ordinary (strongly coupled)

2d spacetime with the linear dilaton.

In order to see that (3.1) is consistent with the time evolution, we can rewrite it

simply as follows

W b2

1,0 W0,1 = 21+b2µ, (3.2)

by using the conserved quantities (or the classical w∞ generators [50][6]) for each fermion

W1,0 = (p + x)e−t̃, W0,1 = (p − x)et̃. (3.3)

Also since we are discussing the 2d bosonic string, only one fermi surface is relevant

and we can only consider the fermi surface which satisfies the constraints p + x < 0 and

9 In most of the literature (e.g. [27][28][29][30]), a non-zero static cosmological constant as in

(1.1) is assumed to compute physical quantities. In particular, it is possible to solve the matrix

model for an Euclidean compactified time by applying the Toda Lattice integrable structure

[45][46][47][48][49] for a rather general backgrounds with time-dependent tachyon perturbations

as shown in [27]. In the discussions of the present paper, however, we do not put the static

cosmological constant term ∼ e2φ (for b 6= 1) because it will change the asymptotic behavior and

lead to a different theory. Interestingly, this suggests that our backgrounds may be related to a

new integrable structure of c = 1 matrix model.
10 Notice the relation t̃ ∼ Qt

2
due to the Lorentz transformation.
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p − x > 0. The matrix model defined by the two fermi surfaces, replacing −p − x with

|p+x| in (3.1) describes a background with a time-dependent NSNS scalar field in type 0B

string theory. Though we mainly restrict to the bosonic string case below, we can obtain

the almost same result in the type 0 case as we will briefly comment later.

The profile of the semiclassical fermi surface includes all information on the dual

string theory at tree level, and can be uniquely determined from the action (1.9) as we

will see later11. To go beyond the tree level we need to define a time-dependent quantum

state in the matrix quantum mechanics (1.2) and this problem is beyond the scope of this

paper.

In general, when a fermi surface is given, the expectation value of tachyon field in

the asymptotic region φ → −∞ can be determined by its deviation from the singular fermi

surface p2 − x2 = 0. We can write this in the following way,

p± ≃ ∓x ± ǫ±
x

(x → −∞), (3.4)

where p+ (or p−) is the value of the momentum at the upper (or lower) branch of the fermi

surface (3.1). After identifying the spacial coordinate as x = e−φ̃, the deviations ǫ± are

related to the left and right-moving part of the massless scalar field η in the 2d spacetime

[23] via

(∂t̃ − ∂φ̃) η(t̃, φ̃) = π−1/2ǫ+(t̃ − φ̃),

(∂t + ∂φ) η(t̃, φ̃) = −π−1/2ǫ−(t̃ + φ̃).
(3.5)

This is explained by the bosonization of Dirac fermions and the massless scalar field η is

the collective field of the fermi sea [51][23][52][53][6]. The scalar field η is related to the

tachyon field T in 2d bosonic string as follows

T (t̃, φ̃) = e2φ̃ · η(t̃, φ̃), (3.6)

up to the leg factor.

11 To be exact, we should say that the cosmological constant µ in (3.1) corresponds to µγ(b2)

in (1.4) (see appendix A).
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Let us apply this method to (3.1) in order to examine the tachyon field in this

background. If we expand the fermi surface near the two asymptotic regions as in (3.5),

we get

p − x ∼ 2µe(b2−1)t|x|−b2 , p + x ∼ −2µ1/b2e(1−1/b2)t|x|−1/b2 . (3.7)

Following the rule (3.5), we can extract the expectation value of the tachyon field from

(3.7)

T− = µ exp
(

(b2 − 1)X̃0 + (1 + b2)φ̃
)

, T+ = µ1/b2 exp
(

(1 − 1/b2)X̃0 + (1 + 1/b2)φ̃
)

.

(3.8)

The two tachyon fields T− and T+ represent the two contributions from each term in (3.7).

The first one T− exactly coincides with the Liouville potential in (1.9). The second one

also agrees with the Lorentz transformation of the dual Liouville potential µ̃e
2
b
φ (µ̃ =

µ
1

b2 ). As is known in the Liouville conformal field theory, the dual potential automatically

appears whenever we put the original one [20][21][22][8]. Thus our matrix model description

precisely reproduces this fact. In terms of the dual picture we can also rewrite (3.1) as

follows

(−p − x)(p − x)
1

b2 = µ̃e(1−1/b2)t̃. (3.9)

Notice that the form of the fermi surface (3.1) is determined uniquely by the identification

of asymptotic fields and the time-evolution.

From the viewpoint of the matrix model (2.1), which is directly dual to the back-

ground (1.4) before the Lorentz transformation, the fermi surface is given by

(

−λ̇ − bλ
)b2
(

λ̇ − 1

b
λ

)

= 21+b2µ. (3.10)

This looks like a static background and is consistent with the static Liouville potential in

(1.4). To find the result (3.10), notice that the conserved quantities are now given by

W1,0 = (λ̇ + bλ)e−t/b, W0,1 = (λ̇ − λ/b)ebt. (3.11)

3.1. Scattering Amplitudes

To find a further evidence that the fermi surface (3.1) is dual to the background

(1.4) or equally (1.9), it is useful to compare the scattering S-matrices. To compute the
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scattering amplitudes in the matrix model side, we can apply the Polchinski’s scattering

equation [23]

ǫ+(t̃ − φ̃) = ǫ−(t̃ − φ̃ − log(ǫ+(t̃ − φ̃)/2)), (3.12)

where ǫ+ and ǫ− are the incoming and outgoing deformations of the fermi surface defined

previously in (3.4). This equation states that an incoming wave completely turns into the

outgoing one by the reflection with a time-delay represented by the − log ǫ+ term in (3.12).

We can express excitations from (3.7)

ǫ+ = 2µ1/b2e(1−1/b2)(t̃−φ̃)(1 + δ+(t̃ − φ̃)), ǫ− = 2µe(b2−1)(t̃+φ̃)(1 + δ−(t̃ + φ̃)). (3.13)

To make the expression simple, we can introduce

δ̃−(x) = δ−

(

x

b2
− 1

b2
log µ

)

. (3.14)

Then the scattering equation (3.12) becomes

(1 + δ+(x))b2 = 1 + δ̃−
(

x − b2 log(1 + δ+(x))
)

. (3.15)

We can solve (3.15) recursively up to the order O(δ̃3
−),

δ+ =
1

b2
δ̃− +

(

− 1

b2
δ̃−δ̃′− +

1 − b2

2b4
δ̃2
−

)

+
(

(

1

6b6
− 1

2b4
+

1

3b2

)

δ̃3
− +

1

b2
δ̃−δ̃

′2
− + (

3

2b2
− 1

b4
)δ̃2

−δ̃′− +
1

2b2
δ̃2
−δ̃′′−

)

.

(3.16)

Notice that the leading relation δ+(x) ∼ δ−(x/b2+const.)
b2

tells us that the incoming wave

with energy Ẽ will be shifted into the energy b2Ẽ due to the moving wall. The relation

(3.16) shows the 1 → 1, 1 → 2 and 1 → 3 scattering12 of closed strings. As we will show

in the last of this section, it is also possible to find the exact solution to (3.15).

In order to compare these results with those of the string theory scattering amplitudes

in the background (1.4), we would like to perform the Lorentz transformation (1.8). The

12 The term ‘n → m scattering’ means that the process with n incoming and m outgoing

particles.
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massless scalar field η can be written in terms of the deformation of fermi surface by using

(3.5)

(∂t − ∂φ)η(t, φ) = π−1/2∆+(t − φ),

(∂t + ∂φ)η(t, φ) = −π−1/2∆−(t + φ + (log µ)/b),
(3.17)

where ∆± is defined by

∆+(y) = 2bµ1/b2e−qy · δ+(by),

∆−(y) =
2

b
µ1/b2e−qy · δ̃−(by).

(3.18)

By substituting (3.18) into (3.16) , we can find the scattering equation in the original frame

∆+ = ∆− − 1

4
µ−1/b2(eqy∆2

−)′ +
b

24
µ−2/b2(e2qy∆3

−)′ +
1

24
µ−2/b2(e2qy∆3

−)′′. (3.19)

The quantization of η can be done as

η =
i

2π1/2

∫ ∞

−∞

dE

E

(

aEeiE(t−φ) + ãEeiE(t+φ)
)

. (3.20)

The creation and annihilation operator satisfy (we follow the convention in [23])

[aE, aE′ ] = [ãE , ãE′ ] = −E · δ(E + E′). (3.21)

aE (E > 0) (or ãE (E > 0)) represents a creation operator of incoming (or outgoing)

particle. Then the ∆± can be expressed as

∆+(y) = −
∫

dE

E
aE eiEy,

∆−(y) =

∫

dE

E
ãE eiEyµ− i

b
E .

(3.22)

By plugging (3.22) in (3.19), we obtain

−µ
i
b
E · aE =ãE − i

4
µ−1E

∫

dE′ ãE′ · ãE−E′+iq

+
1

24
µ−2(ibE − E2)

∫

dE′dE′′ ãE′ · ãE′′ · ãE−E′−E′′+2iq.

(3.23)

The first term in the right-hand side represents the reflection amplitude (or two point func-

tion) and is precisely the same as the one (2.12) obtained in the world-sheet computation

after we multiply the previous leg factors in (2.8)

Γ(iP/b)

Γ(−iP/b)
· Γ(ibP )

Γ(−ibP )
, (3.24)
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and perform a scaling µ → µγ(b2). As we have explained in section2, each Γ function ratio

in (3.24) comes from the incoming or outgoing process, respectively. In this way, we can

read off S-matrices from (3.23) including the leg factor (3.24)

S
(2)
1→1(E1, E2) = −δ(E1 + E2) · µ−iE1/b · Γ(iE1/b)

Γ(−iE1/b)
· Γ(−ibE2)

Γ(+ibE2)
E1,

S
(3)
1→2(E1, E2, E3)

=
i

2
δ(E1 + E2 + E3 + iq) · µ−1−iE1/b · Γ(iE1/b)

Γ(−iE1/b)

Γ(−ibE2)

Γ(+ibE2)

Γ(−ibE3)

Γ(+ibE3)
E1E2E3,

S
(4)
1→3(E1, E2, E3, E4)

= −1

4
δ(E1 + E2 + E3 + E4 + 2iq) · µ−2−iE1/b · Γ(iE1/b)

Γ(−iE1/b)

Γ(−ibE2)

Γ(+ibE2)

Γ(−ibE3)

Γ(+ibE3)

Γ(−ibE4)

Γ(+ibE4)

· (ib − E1)E1E2E3E4.

(3.25)

As we show the details in appendix A, we can see that these amplitudes from the matrix

model precisely agree with the string theory results computed in [54].

It is also possible to solve the scattering equation (3.15) exactly by generalizing the

method developed in [25]. To find the exact solution, we first consider the infinitesimal

variation of δ±(x) and take the Fourier transformation. Then we obtain the solution to

(3.15)

δ+(x) =
1

b2

∞
∑

n=1

Γ(−∂x + 1
b2 )

n! · Γ(−∂x + 1
b2

+ 1 − n)
· (δ̃−(x))n. (3.26)

Plugging (3.18) into (3.26) we get in the end

∆+(y) =

∞
∑

n=1

(

bµ−1/b2

2

)n−1

· Γ(−1
b∂x + 1)

n! · Γ(−1
b∂x + 2 − n)

·
(

e(n−1)qy∆−(y)n
)

. (3.27)

It is easy to see that the specific terms in (3.27) of n = 1, 2, 3 reproduce (3.19). It is natural

to believe that these agreements go over to general n → m scattering amplitudes as was

true [54] in the usual vacuum (1.3) (i.e. the spacial case b = 1). In the appendix B we

also estimated the free energy at tree level and that also agrees with the scaling behavior

predicted from string theory. In this way we have confirmed that the matrix model with

the fermi surface (3.1) reproduces the string theory S-matrices in the background (1.4).
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3.2. Brief Comments on Type 0 String Cases

It is also possible to extend the above results to the 2d type 0 string [9][10] in order

to consider a non-perturbatively sensible theory.

In the type 0B case, there are two copies of the fermi surface (3.1). We can choose

the parameter µ independently for each of the two surfaces and write them as µ1 and µ2.

Then in this background, there are a non-zero tachyon field T and RR-scalar field C given

by

T = (µ1 + µ2) · e(b2−1)X̃0+(1+b2)φ̃, C = (µ1 − µ2) · e(b2−1)X̃0+(b2−1)φ̃, (3.28)

corresponding to the symmetric and asymmetric part with respect to the exchange of the

two fermi sea.

If we consider the type 0A case in the RR-flux background, things become more

non-trivial. The equation (3.1) is no more consistent with the time-evolution since the

Hamiltonian is given [10][55] by that of the deformed matrix model [56]

2H = p2 − x2 +
M

x2
, M ≡ q2 − 1

4
, (3.29)

where the integer q represents the background RR-flux. It is useful to notice the conserved

quantities13

W+ = e−2t

(

(p + x)2 +
M

x2

)

,

W− = e2t

(

(p − x)2 +
M

x2

)

.

(3.30)

Then it is natural to expect the fermi surface (3.1) in bosonic string is now replaced by

W b2

+ W− = µ′2, (3.31)

in the 0A model. When there is no RR-flux M ≃ 0, it is obvious that the parameter µ′

corresponds to that of the tachyon field (setting µ′ = µ in (1.9)) because the equation

(3.31) becomes the same as (3.1). The comparison with the string theory results go over

in the same way. In the non-zero RR-flux cases, the precise relation between µ′ and µ will

be a bit complicated and will be q dependent.

13 Also notice the relation W+W− = 4(M + H2).
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4. Matrix Model and Time-like Liouville Theory

It is possible to add the time-like Liouville potential term

S1 = ν

∫

dσ2e−2bX0

, or S2 = ν′
∫

dσ2e2X0/b, (4.1)

to our model defined by (1.4) and (1.5) at least perturbatively. Note that we can put the

term (4.1) in addition to the conventional Liouville term because the two CFTs , i.e. time

and space-like ones are decoupled.

The time X0 part of this kind of CFT was considered in [15][31] by assuming the

analytical continuation from the usual space-like Liouville theory. The model is obviously

a basic example of rolling closed string tachyon condensation. Though there are several

evidences that such a treatment gives sensible results, their properties are far from well-

understood. For example, the two potentials in (4.1) are at least formally dual to each

other if we extend the result for usual space-like Liouville theory to our time-like case.

However, this looks rather strange since the two tachyon fields behave oppositely.

4.1. Matrix Model Dual of Time-like Liouville Theory

On the other hand, if we know its matrix model dual, we can define such a theory

non-perturbatively. We can rewrite (4.1) as deformations of fermi surface as we have done

previously using (3.4)

ǫ′− = νe−(1+b2)(t+φ) = νe−(1+b2)t|x|1+b2 , ǫ′+ = ν′e−
1+b2

b2
(t+φ) = ν′e+ 1+b2

b2
t|x|

1+b2

b2 . (4.2)

These two perturbations of fermi surface represent the background tachyon fields, i.e. the

Lorentz transformation of (4.1)

T ′
− = νe−(1+b2)X̃0+(1−b2)φ̃, T ′

+ = ν′e
1+b2

b2
X̃0+ b2−1

b2
φ̃. (4.3)

We can argue that the fermi surface14 is now given by

(p − x)(−p − x)b2 = µe−(1−b2)t̃ + ν(−p − x)2b2e−(1+b2)t̃, (4.4)

14 The special case b = 1 has been discussed in [28] from the viewpoint of closed string tachyon

condensation and cosmology.
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by considering15 a suitable deformation of (3.9). We assume p + x < 0, p − x > 0 and

0 < b < 1, and consider only bosonic string case, though the generalization to type 0 case

is possible as in section 3.2. Indeed, the asymptotic tachyon field16 for (4.4) found from

(3.4) is given by the sum of T± and T ′
−. It also deserves our attention that when µ = 0 we

can exactly regard (4.4) as the analytical continuation b → ib of (3.1).

The time evolution of this fermi sea can be summarized as follows. At an early

time t → −∞, the fermi sea is completely pushed into the infinity and thus there is no

spacetime. Then the fermi sea begins to appear as the closed string tachyon field T ′
−

becomes smaller. Finally for a large positive t, the fermi surface approaches the previous

one (3.1) and eventually at t = ∞ the spacetime looks like a linear dilaton background.

Notice that this shows that the other tachyon field T ′
+ is not relevant for this matrix model

background.

4.2. Spacetime Geometry from Matrix Model

Next we want to check if the 2d spacetime obtained from (4.4) is indeed the same

as what we expect from the string theory side. This is much more non-trivial than the

previous case (3.1) since the asymptotic behavior at the early time is rather different from

the canonical one p = ±x due to the second term. To see this it is helpful to derive

the corresponding collective field theory [51] and try to find how the spacetime looks like.

Intuitively, the infinitely long spacial direction of the 2d spacetime is dynamically generated

from the infinitely extended fermi surface. Fluctuations on the fermi surface correspond to

15 However, this form (4.4) cannot be the unique choice. For instance, we can assume another

fermi surface

(p − x)1/b(−p − x)b = µ1/be−(1/b−b)t̃ + ν1/b(−p − x)2be−(1/b+b)t̃. (4.5)

This will also have the same properties as (4.4) within the discussions in this section since both

have the same asymptotic behavior. To find the unique fermi surface for the string theory (1.9),

we need to compare physical quantities explicitly as we have done in the previous section. In this

paper we will not go into that detail.
16 Here we omit the detailed coefficients in front of µ and ν.
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the collective excitations of the fermions and this is conveniently described by the collective

field theory [51]. The collective field ϕ is originally defined by the density of eigenvalues

ϕ(x, t̃) = Trδ(x − Φ(t̃)). (4.6)

A fluctuation from its classical value ϕ0 = 1
2π (p+ − p−) corresponds to a massless scalar

field η (or tachyon field T in bosonic string via T = gs · η). Therefore one way to know

the properties of the spacetime is to investigate propagations of fluctuations on the fermi

surface. As pointed out in [57] (see also [29][30]), we can extract an effective geometry of

the spacetime by computing the kinetic term of η at the quadratic order in the collective

field theory, given by

S(2) =

∫

dt
dx

p+ − p−
[(∂t̃η)2 + (p+ + p−)∂t̃η∂xη + p+p−(∂xη)2]. (4.7)

Here again p+ and p− denote the upper and lower branches of fermi surface in the (x, p)

plane. The ‘effective metric’ can be found by just comparing (4.7) with the standard

expression ∼ √
ggµν∂µη∂νη up to the conformal transformation17.

Let us apply this method to our example. We can conveniently choose the spacial

coordinate σ as follows

−p − x = µ
1

1+b2 eσ, p − x = µ
1

1+b2 e−b2σ+(b2−1)t̃ + νµ
1

1+b2 eb2σ−(1+b2)t̃. (4.8)

We can find two solutions of p to (4.4) for fixed x. We parameterize the two branches by

p+ = p(σ, t̃) and p− = p(σ̃, t̃) by introducing another function σ̃(σ, t̃) such that x(σ) =

x(σ̃). The parameters take the values

−∞ < σ ≤ σ0(t̃), σ0(t̃) ≤ σ̃ < ∞, (4.9)

where σ0 is a time-dependent function and behaves like σ0(t̃) ∼ − 1+b2

1−b2
t̃ for large t̃.

Now, we can rewrite the effective field theory (4.7) in terms of the coordinate (t̃, σ̃).

Let us consider the asymptotic geometry, i.e. we assume that |t̃| and σ̃ are large, to make

the computations simple. When the two conditions (the first one just corresponds to (4.9))

(1 − b2)σ̃ + (1 + b2)t̃ > 0, (1 + b2)σ̃ + (1 − b2)t̃ > 0, (4.10)

17 This means that we can always find a coordinate where the metric is flat as noted in [57].

Here we use the effective metric to see if the coordinate we assumed is singular in that region.
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are satisfied, the first and second exponential terms (i.e. the ν independent ones) in the

right-hand side of (4.8) are dominant for the large values of |t̃| and σ̃. In this case, (t̃, σ̃)

coincides with the coordinate (X̃0,−φ̃) in the string theory side. Indeed, the kinetic term

of (4.7) takes the standard form ∼ (∂t̃η)2 − (∂σ̃η)2. It is also possible to see that for the

other values than (4.10), the effective ‘metric’ obtained from (4.7) degenerates into that of

a line and thus this does not contribute to the spacetime geometry. Thus we can conclude

that the spacetime is given by the region (4.10) or equally

{(X̃0, φ̃)| (1 − b2)φ̃ − (1 + b2)X̃0 < 0, (1 + b2)φ̃ − (1 − b2)X̃0 < 0}. (4.11)

Indeed, this is consistent with the expectation in the world-sheet theory side. The two

conditions in (4.11) correspond to the tachyon walls T ′
− in (4.3) and T± in (3.8), respec-

tively. In other words, if we return to the the original frame, the condition (4.11) just

means the upper bound for X0 and the lower bound for φ. It is again confirmed that the

other tachyon field T ′
+ does not contribute in this background. This will be a good lesson

when we analyze the time-like Liouville CFT.

Then one may ask what is the matrix model configuration dual to the tachyon field

T ′
+. If we remember the dual equivalent expression of the fermi surface (3.9), we can easily

identify it with

(−p − x)(p − x)1/b2 = µ1/b2e−(1/b2−1)t̃ + ν′(p − x)2/b2e(1+1/b2)t̃. (4.12)

The previous arguments can also be applied to this case similarly. If we simply assume

µ = 0, then the two different backgrounds defined by T ′
− and T ′

+ correspond to the upper

and lower region divided by the surface p − x = νe−(1+b2)t̃|p + x|b2 , respectively.

5. Ground Ring and Possible Relations to Non-Compact Calabi-Yau

So far we have investigated the equivalence between the 2d string theory in our

specific backgrounds and its dual matrix model description by looking at the properties

of the tachyon field in the 2d spacetime. There is another helpful proposal [58] that we

can directly relate the fermi surface to the ring structure, so called ground ring, of BRST
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invariant operators at ghost number zero. In the ordinary static c = 1 vacuum this is

simply given by

xy = µ, (5.1)

as proposed in [58] and proved in [10] explicitly (x and y are the ground ring generators and

will be defined below more generally). Indeed this agrees with the fermi surface equation

(1.3) after a rather trivial change of basis. Let us apply this idea to our examples18.

When the value b2 takes rational values 0 < p
q ≤ 1 (p and q are coprime integers),

we can write the fermi surface equation (3.1) in the form

W q
0,1W

p
1,0 = µq, (5.2)

using the conserved quantities (3.11). This strongly implies that the ground ring structure

[58] in our background (1.4) will be

xqyp = µq, (5.3)

where x = aā and y = bb̄ are the ground ring generators. We can write them explicitly

via the Lorentz transformation (we show only the ones in the left-moving sector)

a =
(

cb +

√

q

p
∂(φ + iX)

)

e
√

p

q
(iX−φ), b =

(

cb +

√

p

q
∂(φ − iX)

)

e−
√

q

p
(iX+φ), (5.4)

where X = iX0 is the Euclidean time. Obviously for p = q = 1 this statement is reduced

to the basic result (5.1). For general p and q, we will be able to show this relation almost

in the same way.

These expressions (5.4) are formally the same as the ground ring generators for the

(p, q) minimal string in the coulomb gas description [59][60]. Nevertheless the ground ring

structure (5.3) for our non-minimal case is different from that of the minimal string found

in [61] because there are screening operators in the minimal model case. On the other

hand, if we consider another one (4.4) (or (4.5)) corresponding to the time-like Liouville

potential, we obtain the relation at µ = 0

yp · (xq − νq yp) = 0. (5.5)

18 The author especially thank Davide Gaiotto and Cumrun Vafa for very useful suggestions

and comments on this section.
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This looks very close to the one in the minimal string [61][62], except the factor yp. This

may be natural since we now have the Liouville potential (or screening operator) in the

matter CFT as in the minimal case. We would like to leave the details on this issue for

future work.

As pointed out in [10], the values of the ground ring elements are also directly related

to the charges carried by decaying D0-branes19. Generalizing this analysis to our case, we

can show that the expectation value of x and y on a decaying D0-brane discussed in section

2.1 is given by (up to a constant)

〈x〉 = µBµ
1
2 , 〈y〉 = µ

1
b2

B µ
1

2b2 , (5.6)

employing the boundary Liouville theoretic results [42][43]. The µB dependence of (5.6)

is indeed consistent20 with the expectation values of W0,1 and W1,0 for the trajectory

−λ(t) = µBe−bt + µ̃Bet/b, where we have included the dual cosmological constant µ̃B =

µ
1/b2

B . It would also be intriguing to study the other kind of D-branes (or non-compact

branes) in these spaces and compare them with the dual 2d dimensional string in order to

understand the open-closed duality [62][64].

As is well known, the c = 1 string at the self-dual radius is equivalent to the topolog-

ical string (B-model) on the conifold [65] (refer to [66][67][68][69] for more general back-

grounds obtained from the quotients or perturbations of c = 1 string, and also refer to

[62] for modern perspectives.). Thus we may expect that our backgrounds, when suitably

compactified, will also be dual to the topological string on specific non-compact Calabi-

Yau manifolds. After we wick-rotate the time into the Euclidean one, we can impose the

periodicity21 X ∼ X + 2π
√

pq (i.e. the radius R =
√

pq in the α′ = 1 unit) since the

19 In the papers [63], another definition of the conserved charges carried by the D0-branes was

considered. This may also lead to similar interesting results in our case.
20 Note that here we only discuss the ‘half S-brane’ [36][37][38]. For more general boundary

interactions like an analogue of the ‘cosh’ brane [35], we will expect a non-trivial renormalization

of µB as is so in the c = 1 CFT.
21 This is a different compactification radius than the one R =

√

p
q

in the Coulomb-gas

representation of the minimal model. This is because the latter has the screening operators. Our

model does not have such operators and thus this smaller radius is not consistent with gs.
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coupling constant gs ∝ e−iqX respects this22. The most plausible speculation will be that

this compactified background is dual to the non-compact Calabi-Yau manifold defined by

xqyp + wz = µq. (5.7)

We can choose the corresponding ground ring generators so that the momentum and

winding number obey the standard quantization rule

x = aā, y = bb̄, w = aqb̄p, z = bpāq. (5.8)

It will be possible to find a similar algebraic equation for type 0 string case (see

[10][71][12][72] for relevant discussions on the ĉ = 1 string).

It may be helpful to compare this with the known ground ring for the c = 1 string

at the radius R = r
s

(r and s are coprime integers), given by

(xy)r + (wz)s = µ′, (5.9)

as found in [68]. This is obviously a different background from ours. However, it is curious

that in the special case of the common radius R = q ∈ Z, this equation (5.9) agrees with

ours (5.7).

6. Conclusions and Discussions

In this paper we have discussed a matrix model dual of the 2d string theory with a

time-like linear dilaton matter. This may be called as a non-minimal c < 1 non-critical

string. Compared with the standard minimal model case, we can allow irrational values

of the central charge. After the Lorentz transformation this background is equivalent to

the usual c = 1 string with a non-standard and time-dependent Liouville potential. We

identified the corresponding time-dependent fermi surface in the dual c = 1 matrix model.

We compared the tree level scattering S-matrices in the matrix model with those computed

in 2d string theory and found a perfect agreement. It would be interesting to find a precise

22 A similar compactification in a time-like direction also recently discussed in a matrix model

dual of harmonic oscillator [70].
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matrix model dual description beyond the tree level. Notice that in other words, we have

discussed how to realize the Lorentz transformation, which is only manifest in 2d closed

string theory, from the viewpoint of its holographic dual open string theory defined in the

lower dimension. We also proposed an equivalent topological string description on a series

of specific non-compact Calabi-Yau manifolds given by (5.7).

Another interesting quantity in the matrix model which we may be able to compare

with string theory will be the macroscopic loop operator log(µB + Φ) [73] (see also the

review [8]). As shown in [74], it is equivalent to the FZZT-brane with Dirichlet boundary

condition in the time-direction when we assume the usual vacuum b = 1. For generic b,

however, this does not look straightforward because there is a linear dilaton in the time

direction and its Dirichlet boundary condition is not well-defined. Since the loop operator

itself is well defined even in time-dependent background, this will be an intriguing future

problem23. A related question will be the D-brane spectrum24 in the dual non-compact

Calabi-Yau (5.7) and its relation to the boundary states in our background (1.4).

We also noticed that the matrix model description predicts a series of new boundary

states in our backgrounds of two dimensional string theory. This is a generalization of the

known boundary states for the rolling tachyon T (t) ∼ cosh(t) [35] in our time-like linear

dilaton case.

Furthermore, we discussed the 2d string theory whose matter part (or time part) is

given by a time-like Liouville theory. We considered the dual matrix model configuration.

Interestingly, we noticed that the dual cosmological constant does not automatically appear

when the original cosmological constant is non-zero25. To understand better the duality

between the time-like Liouville theory and our matrix model background, we will need to

compare dynamical quantities like scattering amplitudes. Even though it is not clear if we

23 For example, we can write down the deformation of fermi surface due to the loop operator

as in [75]. Though we can read off from this the one-point function of the corresponding D-brane

boundary state, its explicit form does not look so simple except the ordinary case b = 1.
24 In the minimal model case, we can associate the moduli of FZZT-branes with a Riemann-

surface in non-compact Calabi-Yau spaces [62][61] at tree level.
25 This may also solve a similar puzzle in the SL(2, R)/U(1) WZW model at the level 0 < k < 2

and its sine-Liouville dual noticed in [17].
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can define scattering processes in the string theory side of the time-like Liouville theory,

it seems that we can consider an incoming wave in the matrix model background and try

to follow the time-evolution. This issue will also deserve a future study.
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Appendix A. Comparison of S-matrices in 2D String Theory

Here we summarize the results of S-matrix in 2d String Theory. First we follow

the notation of [54] i.e. α′ = 2 and the Liouville potential is µ
∫

dσ2e−
√

2bφ. The vertex

operators are given26 by eikX+(−Q/
√

2+|k|)φ (Q = b + 1/b) and X is now Euclidean. We

define the ‘leg factor’ (see (2.8))

∆(k) =
Γ(1 −

√
2k
b

)

Γ(
√

2k
b )

(k > 0), ∆(k) =
Γ(1 +

√
2bk)

Γ(−
√

2bk)
(k < 0). (A.1)

The S-matrix of three particles are given by

S(3)(k1, k2, k3) = δ(k1 + k2 + k3 + q/
√

2) · (µγ(b2))s ·
3
∏

i=1

(−π · ∆(ki)) , (A.2)

where s is the number of insertions of the Liouville potential term so that it satisfies the

momentum conservation
3
∑

i=1

|ki| −
√

2bs =
1√
2
Q. (A.3)

The four point function is

S(4)(k1, k2, k3, k3) = δ(k1 + k2 + k3 + k4 +
√

2q) · (µγ(b2))s ·
4
∏

i=1

(−π · ∆(ki))

·
[

1√
2b

(

|k1 + k2 + q/
√

2| + |k1 + k3 + q/
√

2| + |k1 + k4 + q/
√

2|
)

− 1 + b2

2b2

]

,

(A.4)

26 Here we have shifted k in [54] by α = 0.
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where s is given by
4
∑

i=1

|ki| −
√

2bs =
√

2Q. (A.5)

Let us compare these results of 1 → 2 and 1 → 3 scattering with those in the matrix model

computed in section 3. To match the convention we have to return to the Minkowski

signature with α′ = 1 unit performing the scaling

√
2k → −iE. (A.6)

Then they are written as follows27

S
(3)
1→2 =

i

b
· δ(E1 + E2 + E3 + iq) · (µγ(b2))−1−iE1/b · (−π)3

× Γ(1 + iE1/b)

Γ(−iE1/b)

Γ(1 − ibE2)

Γ(ibE2)

Γ(1 − ibE3)

Γ(ibE3)

= δ(E1 + E2 + E3 + iq) · (µγ(b2))−1−iE1/b · (−π)3 · E1E2E3

× Γ(iE1/b)

Γ(−iE1/b)

Γ(−ibE2)

Γ(ibE2)

Γ(−ibE3)

Γ(ibE3)
,

S
(4)
1→3 =

i

b
· δ(E1 + E2 + E3 + E4 + 2iq) · (µγ(b2))−2−iE1/b · (−π)4 · (−1 − iE1/b)

× Γ(1 + iE1/b)

Γ(−iE1/b)

Γ(1 − ibE2)

Γ(ibE2)

Γ(1 − ibE3)

Γ(ibE3)

Γ(1 − ibE4)

Γ(ibE4)

= δ(E1 + E2 + E3 + E4 + 2iq) · (µγ(b2))−2−iE1/b · (−π)4 · (ib − E1)E1E2E3E4

× Γ(iE1/b)

Γ(−iE1/b)

Γ(−ibE2)

Γ(ibE2)

Γ(−ibE3)

Γ(ibE3)

Γ(−ibE4)

Γ(ibE4)
.

(A.7)

In the end we can show that the string theory S-matrices exactly agree with those of c = 1

matrix model (3.25) taking into account the scaling µ → µγ(b2) and the field normalization

Smat(t, φ) =

(

− i

2π

)

· Sstring,α′=1(t, φ). (A.8)

Appendix B. Computation of Free Energy

It will also be useful to find the tree level free energy in the matrix model background.

We can estimate the expectation values vn,m of the (classical) w∞ algebra [50][6]. Since

27 Here we neglect the common factor
√

2 which comes from the delta function normalization.

Also we put a factor 1
b

due to the integration over the zero mode of φ, which is not explicitly

written in [54].
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the fermi sea extends infinitely, we need a cut off |x| < Λ. We can explicitly evaluate the

classical contributions in the late time t >> 1 as follows

vn,m ≡ e(n−m)t

∫

F−F0

dxdp

2π
(−p − x)m(p − x)n

= −e(n−m)t

m + 1

[

∫ Λ

a

dx

2π

(

2µ1/b2e(1−1/b2)t̃|x|−1/b2
)m+1

· (2|x|)n

]

− e(n−m)t

n + 1

[

∫ Λ

a

dx

2π

(

2µe(b2−1)t̃|x|−b2
)n+1

· (2|x|)m

]

= Cn,m · µ
n+m+2

1+b2 · e
[

2b2

1+b2
(n+1)− 2(m+1)

1+b2

]

t̃
+ (Λ dependent term),

(B.1)

where F is our fermi surface and F0 is the one defined by p2 − x2 = 0. a is defined to be

a = 1
2 · b

2
1+b2 (1 + 1/b2). The constant C is given by

Cn,m =
2n+m+1

π((n + 1)b2 − m + 1)
·
(

b2

m + 1
· (2a)n+1−(m+1)/b2 − 1

n + 1
· (2a)−(n+1)b2+m+1

)

.

(B.2)

In particular, the energy of the system is

v1,1 = C1,1 · µ
4

1+b2 · e4 b2−1

b2+1
t̃
. (B.3)

On the other hand, in the string theory on the background (1.4) we can estimate the

time-dependent energy

F (t) ∼ (gs)
−2 = e−2qt−2Qφ0 , (B.4)

where φ0 is the characteristic value given by µe2bφ0 = 1. Then we can see that the both

results (B.3) and (B.4) agree with each other because

µ
4

1+b2 · e4 b2−1

b2+1
t̃
= µ

4
1+b2 · e−2qt−2 q2

Q
φ0 = e−2qt−2Qφ0 . (B.5)
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